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ABSTRACT

In the context of stochastic dependency of the noise and signal - as
in the case of the reverberation noise - the classical methods of sig-
nal detection are not applicable. The paper presents a likelihood
ratio detection method based on stochastic calculus. The novel
aspects of the method are: the signal and the noise need not be
stochastically independent and they both can be nonstationary and
non-Gaussian. This method is applicable to the active sonar which
is a reverberation limited system. Simulations related to the under-
water propagation of the acoustic wave show a good performance
of the detector at the receiver operating characteristic level. The
likelihood ratio detection method can also be successfully applied
in mobile communication for the channel dynamical allocation, as
well as in radar applications.

1. INTRODUCTION

Signal detection theory appeared in the 1940’s motivated by the
context of the war efforts [1]. Its foundations are strongly con-
nected with the Norbert Wiener’s work for a MIT project trying to
predict the track of an airplane, as well as the publication of the
first book on radar detection [2]. The idea, new at the time, was
that the communication of information is a statistical problem and
that the performance limits could be calculated from optimization
criteria and a systematic approximation designed.

It was acknowledged that the “signal-to-noise ratio” used by
the matched filter was not the natural criterion for signal detec-
tion. Mark Kaç provided the connection with statistical hypothe-
sis testing, noting that the Neyman-Pearson criterion is adequate
for radar detection. The basic operation is to compare a likelihood
ratio with a threshold, whose value is determined by a certain crite-
rion. If
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	��������
and  ����� are stochastic processes describing

the received signal, the transmitted signal and the noise, respec-
tively, then the detection problem consists, in terms of statistical
hypotheses tests, of choosing between������� ���������  ����� ������������ � ��������� 	������"!  �����#����������$ (1)

The strategy provided by Neyman-Pearson criterion assigns the
detector to the likelihood ratio expressed as a Radon-Nikodym
derivative %'&)(+*-,%'&
, $

This is an optimal detector, in the sense that
it minimizes the probability of non-detection, for a given probabil-
ity of false alarm. In particular this fits the case of radar or sonar
detection, where it is hard to judge the implications of not detect-
ing a target but the acceptable probability of false alarm can be
determined. The performance of this detection method is usually
measured by means of the receiver operating characteristic (ROC),
obtained by plotting the probability of detection versus the proba-
bility of false alarm.

Along with the expansion of application from radar to sonar,
remote sensing and pattern recognition, the noise models evolved
from white Gaussian noise to coloured Gaussian noise and ran-
domly modulated jump processes. Following these ideas, the like-
lihood ratio algorithm presented here is applicable, under minimal
assumptions, to the detection of a random signal of unknown law,
disturbed by a noise with filtered Wiener and Poisson components.
Such models, as discussed at length in [3] and [4], are applica-
ble when the noise is very nonstationary and the signal cannot be
represented as a set of narrowband components. Typical exam-
ples come from the radar and sonar areas [5]. As the considered
stochastic processes will be defined not on an arbitrary abstract
probability space, but in the space of the sample paths of the re-
ceived signal, sometimes notation

���������
for example, will be given

explicitly in the form
���/.-�����

where
.

is a particular sample path
of the received signal.

2. THE DETECTION MODEL

The motivation of the detection model presented here arises from
active sonar applications.

In the active sonar technique the injected signal - generated by
the source with the objective of detecting the presence of a target
- is distorted by the underwater channel consisting of surface, bot-
tom and volume scatterers. If the target is present then the signal
will ”contact” the target, and this contact represents the signal to
be detected at the receiver. In addition to the fading, the injected
signal is distorted by the echoes due to returns from surface, vol-
ume and bottom scatterers. These form an additional component
of the noise, called reverberation noise [6]. In fig. 1 the fading
effect, the reverberation and the background noise at the receiver
are shown. The background noise is Gaussian in general, and is
stochastically independent with the contact signal. The reverber-
ation noise is non-Gaussian and stochastically dependent with the
contact signal, because they contain distortions from the same en-
vironment of the same injected signal [6].

The active sonar system is said to be a reverberation limited
environment because the reverberation component dominates the
background noise. Since the background noise exists equally in
the presence or absence of the target, the detection model does not
consider it.

The signal observed at the receiver is modeled as an oscillation
process defined as �������0�21
354 37698;:=<?>

(2)

where
4 3

are random variables. Hence, this is the superposition of
oscillations with frequency @ 3
A=B+C $

The reverberation aspect, leads to the assumption that in rela-
tion 2 which describes the oscillation process, the random vari-
ables

�D4 3 � 3
are correlated, i.e. E �D4 3 47F=���HG 3 FJILK $

Then
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Fig. 1. Active sonar diagram: reverberation limited environment
when reverberation noise surpasses the bottom noise.

�������
is not a stationary process and cannot be studied by means

of the linear theory of random processes, as Fourier transforms of
an orthogonal stochastic measure [7];

�������
is therefore a partic-

ular case of an harmonizable process [8]. In usual situations, the
variance of the received signal,

�������
is finite. Then,

�������
can be

represented by means of the Cramér-Hida decomposition [9], i.e.,
the signal can be viewed as a superposition of stochastic integrals
with respect to stochastic processes with orthogonal increments	�
�����������������

in the form given by

������������
���� �"!#%$ 
 ���&�'(�*)+	 
 ��',� (3)

where $ 
 �����-.� are causal transforms: $ 
 �/-0����1�32
if
-54��

.
�

is
the Cramér-Hida multiplicity of

�������
and gives the complexity of

the random process. Computational restrictions lead to a limitation
of the model to

�6�7�
and to a subclass of stochastic processes

with orthogonal increments, namely the set of processes with in-
dependent increments. Lévy decomposition [10] proves that the
processes with independent increments are essentially generated
by the sum of Gaussian and Poisson processes. Then, the received
process is modeled by�������8� � !#�$ �����'(�*)+	���'(��

where (4)	9�����:� �;�< 	 � �����>=@?	BA0�����DC
with

	5�E�����
a generalized Brownian motion and

?	 A �����
a Poisson

martingale, both having the same variance function F ������G&	������
will

be addressed as unfiltered noise. In this form,
�������

models non-
message bearing signal or “non-intelligent” noise.

The presence of a target on the channel makes at least one
oscillation from the fluctuations modeled by the oscillation process
have a particular behaviour: it becomes smoother than the other
oscillations, i.e., it has an “intelligent” character [11].

The signal observed at the receiver has therefore one outstand-
ing component in the oscillation process model; this component is
modeled by a stochastic process

-H�����
which includes the informa-

tion carried by the target, in the form��������� � !#%$ ����I'(�KJ -H��'(� F ��) '(�K=%)+	9��',�/L0G
(5)

The same factor $ �����'(�
multiplies both the noise and the “signal”-H�����

as a consequence of the fact that the injected signal is their
common root. The statistical distribution of

-H�����
is supposed to be

unknown.
Hence, the detection problem consists of determining for a

given observed signal at the receiver which one of the relation 5 or
4 applies. The channel modeling used for sonar applications does
not differ in essence from that used in mobile communications. In
addition to the distortion produced by fading, signals on a wireless
channel may be affected by interference, a phenomenon for which
the uncorrelation assumption is not appropriate. For this situation,
as for the case of the reverberation phenomenon, the model pro-
posed here may be used.

3. LIKELIHOOD RATIO DETECTION ALGORITHM

When the detector is chosen to be based on a likelihood ratio, in
order to obtain a rigorous solution the following four operations
have to be successfully accomplished.

A. Establish the existence of the likelihood ratio. Technically
this means that the absolute continuity of MON+P(Q with respect toM�Q has to be proved.

B. Derive explicitly the likelihood ratio, when it exists, as
a functional R  computable for each received signal and without
knowing which of the M�N+PSQ or M�Q regimes are applicable.

C. Determine the threshold R # required for decision when the
functional R is available. A R # is associated with every predefined
probability of false alarm T and can be obtained from the equation

T � M�Q �/UWVWX A J 2��YZL([ R �/U,�\4 R # �]G (6)

Also, for every R # the probability of detection
�H^`_

is obtained
from the relation _a� M�N+P(Q � R �/U,�\� R # �KG (7)

D. Find a discretization for which the likelihood ratio satisfies
6 and 7. Since the received signal is usually observed in discrete
form, for example

Ub��� � �
,
Ub����Ac�

,...,
Ub���IdK��

it has to be checked that
approximations R d of R provide

M�Q3eER d �/Ub���&����fG�GfGf�Ub��� d ���g4 Rih d0j#lknm TM�N+PSQ � R d �DUb���&�����GfGfGf&Ub��� d ���g4 R d# � m �o^p_
where R h dHj# is the value of the threshold obtained when R is re-
placed by its approximation R d in relation 6 .

While the results of points (C) and (D) in the previous descrip-
tion may be strongly dependent on the particular features of the
detection problem, the answers to the points (A) and (B) require
a theoretical approach only. For the detection model considered
above, the results from [12, Thm. 2] provide the mathematical
tools in order to be able to fulfill operations (A) and (B). In this
context, the answers to (A) and (B) above are:?q G M�N+P(Q is absolutely continuous with respect to MOQ if the
signal’s finite energy condition

Msr �"t# - A ��'(�*) F ��'(�1u�v"w��x�
(8)



holds.����
The existence of the functional � having the required proper-

ties from (B) above is warranted if, in addition, ��� is absolutely
continuous with respect to �	��
�� � A sufficient condition for that is

�� ������������������! #"%$'&)(*�+",$.-0/�10243 (9)

where � is called the inversion process[12, 5.2]. It has the prop-
erty that, for a fixed 57698 :  <;>=? @�A� 5 $	�CBD2 � � 5 $ so it can be
thought of as a whitening filter. Its construction is presented in the
algorithm below. The condition 9 is satisfied if

EGFIHKJMLON 3P �Q�� �R�S�#TU <"%$'(.�+&)"%$WVYXZ-[/ �
Condition 8 is generally satisfied for the common types of

signals met in practice. The main steps of the algorithm to per-
form for the computation of the functional � are described below.
This algorithm requires knowledge of the unfiltered noise variance(.� 5 $]\ the span of time ; available for observation;the covariance of
the filtered noise or the causal filter transform application ^ � 5  _�S$]\
modulation parameters of the injected signal.

The received signal is assumed to be a continuous waveform�Y� 5 $ such that ` �� � � �+"%$'&)"a-b/ �
The algorithm consists of the following steps:
Step 1. Compute (if ^ � 5  <��$ is known) or estimate (if ^ � 5  ]��$

is unknown) the noise covariancec � � 5  _d!$	2 `	e+f�g� ^ � 5  h"%$ ^ �?dM _",$'&)(*�+"%$ �
Step 1’. If ^ � 5  <��$ is unknown compute or estimate it from the

noise covariance.
Step 2. Compute the eigenvalues i�j  3lknmo and the orthonor-

mal eigenvectors p j  C3qkrms ( m can be finite or infinite) of the
covariance operator associated with

c � � 5  <d�$ (Principal Compo-
nents).

Step 3. Approximate the inversion process �t���@ 5 $ by �vu,���@ 5 $	2w ujyx	z �A{ j}| ���@ 5 $ where ~ k�mo 
� { j}| ���! 5 $	2 3i j��'����� �K� e}�  p j��_�M� � �K� z �'� �@ p j��_�M� � �K� z �

and ���S� �K� e}� �?d�$	2 ` e+f�g� ^ �?d� _"%$'&)" � �S� �K� e}� is the characteristic func-
tion of the interval 8 :  5 = �

Step 4. Compute the functional
�� giving the likelihood ratio

for the unfiltered processes,�� ���,$	2 & �	�)��!� {U� |y�]� {�� | 
�� {I� |& �	�
from �� ���,$�2 HKJML N � �� �*���@ _"%$ p�� �?�@ <&)"%$� 3� ��������	���@ _"%$�(��+&)"%$� 3� P ������*�?�@ <"%$ �� � ���@ <&)"%$ V

where p�� � 5 $ denotes the stochastic process defined on the space of
sample paths of the received signals by p�� ���@ 5 $	2��Y� 5 $ �

Step 5. Compute the functional � ���,$�2 �W���S�@ �W��  ���,$ from� ���,$	2 �� ���A���,$ �

4. IMPLEMENTATION

Assume that values of an observed waveform "O� 5 $ are available at
times : 2 5 � - 5 z -ATWTWT%- 5 uM¡ z - 5 u¢24; stored into a vector£ u � The corresponding values of � are denoted "¤� £ u $ � Then, using
standard approximations of integrals,¥U¦ F & ��M
%�& � � X �+"%$�§ u�¡ z¨ j}x � �.�?�©�I"Y 5hj $_$ 8 ���+"Y 5#j 
 z $ � ���+"Y 5#j $�=

� 3� u�¡ z¨ jyxz �R�	�����+"Y 5 j $#$�� 5 j 
 z � 5 j $
� 3� P u�¡ z¨ j}x � �������+"Y 5 j $_$«ª �� � �����+"Y 5 j 
 z $_$� �� � �����+"Y 5 j $_$?¬

Let �� � £ u!$ denote the covariance matrix of the noise variablesBr�#TU 5 � $� _B®�#TU 5¯z $� �W�K�  <Br�'T° 5 u $! and let ± u denotes the matrix
that transforms the vector ² into a vector ±*² whose ³ th component
is 8 ±.² = j 2 w j ´ xz@µ ´ ��� � £ u@$ can be decomposed as >� � £ u�$	2 ^ u ^l¶u  where ^ u
is lower triangular. As ���+"Y 5#j $�§�· ± u ^ ¡ zu "¤� £ u $�¸ j denoted by¹ j  when 8 £ u�= j 
 z � 8 £ uM= j 2ºd� »3¼k ³ k ~ � 3� an approximation½ ul�I"� £ u!$ of the logarithm of the likelihood

¥U¦ ª �K�)�S�¾ �K��  ¬ �+",$ is

obtained in the form½ uC�+"Y £ u@$¿2 u�¡ z¨ j}x � �*� ¹ j $ · ^ ¡ zu "O� £ u�$ ¸ j 
 z � d � uM¡ z¨ j}x � �R�.� ¹ j $� 3� P u�¡ z¨ j}x � �*� ¹ j $�ª �� � � ¹ j 
 z $ � �� � � ¹ j $+¬
which can be given in a recursive form (when a new observation"O� 5 u 
 z $ is registered.The only new term to compute at step ~OÀ 3
is the term · ^ ¡ zu 
 z "¤� £ u 
 z $ ¸ u 
 z which can be obtained from the

cross correlation of "¤� £ u 
 z $ with the � ~7À 3R$ th row of ^ ¡ zu 
 z �
When the data about the injected signal modulation are not enough,� is estimated from the data. Some details can be found in [13],
and comments about practice follow.

5. THE RECEIVER OPERATING CHARACTERISTIC

Based on large training sequences, the likelihood ratio detector
presented above was compared to three classical detectors. Their
structure is given below, as a function of the covariance matrix of
the noise Á¢� , covariance function of the signal-plus-noise ÁÂ��
%�  
the mean vector of the noise m � and of the signal-plus-noisem ��
%� �

1. Gaussian versus Gaussian (GvG) detector is known as op-
timal when the signal to be detected and the noise are Gaussian
random processes [14]. The detector is given by

� z �+"%$�2 �+" � m � $ Á ¡ z� �+" � m � $_Ã� �I" � m � $ Á ¡ z��
�� �+" � m � $_ÃÀ P �+" � m � $ Ã Á ¡ z��
�� �+m ��
�� � m � $ Ã �
2. Differential likelihood detector(DFL) requires also the knowl-

edge of the second order statistics:� � �+"%$29�+" � m � $ Á ¡ z� � Á ��
�� � Á � $_$ Á ¡ z��+" � m � $_Ã À P �+" � m � $_Ã Á ¡ z� �+m �M
%� � m � $_Ã �
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Fig. 2. Comparison between ROC of the detector given by L and
three classical different detectors.

3. Whitening energy detector (WEN) depends only on the second
order statistics of the noise:���������
	���� ���

The receiver operating characteristic curves associated with
our likelihood ratio detector ��� and GvG, DFL and WEN are pre-
sented in the figure 2. � outperformed, with a probability of detec-
tion of 0.98 for a probability of false alarm of 0.02. For the same
probability of false alarm, DFL gives 0.82 probability of detection,
GvG 0.73 probability of detection while WEN only 0.17.

6. CONCLUSIONS

As can be seen, the theory developed here does not provide, as do
approaches such as matched filtering, an algorithm that can be im-
plemented in a straightforward manner for a given system. Rather,
it provides a likelihood-ratio-based framework within which an ef-
fective implementation can be found. The development of effec-
tive algorithms based on the theory is dependent on analysis of data
properties and representations. The positive part is the existence of
an likelihood ratio based approach allowing to proceed with con-
fidence and which applies to very general signal-plus-noise pro-
cesses, and without using independence assumptions. An other
novelty is that the effect of the communication channel is mod-
eled by the Cramér-Hida framework, as a causal transformation
corresponding to the time variant systems arising in real applica-
tions.Also, a new feature of the model is the impulsive noise com-
ponent, represented by a filtered Poisson process, which fits some
types of “non-intelligent” noise [11] arising in communication sys-
tems as interference which is incoherent relative to the transmitted
signal.
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